

Propagation channel characterization Impact on optical systems performance

SET – 241 – 9th Military Sensing Symposium (Quebec City) 2 June 2017

Marie-Thérèse Velluet, Clélia Robert, Nicolas Védrenne

ONERA

THE FRENCH AEROSPACE LAB

return on innovation

Turbulence and imaging and laser systems

 $C_n^2 = 10^{-16} \text{ m}^{-2/3}$

 $C_n^2 = 10^{-15} \text{ m}^{-2/3}$

Passive images in visible – Range 7 km Recorded during trial in Dayton OH – 2011 (SET 165)

Laser beam intensity 10 km, λ = 1.55 µm (simulation)

OCA 14-17 July 2013

ONERA

of Verteille addressing the

- Atmospheric turbulence degrades EO system performance in terms of resolution / range
- Atmospheric turbulence varies in a « huge » range
 - Day/night; saison, location
 - C_n^2 : 10⁻¹⁷ up to 10⁻¹² m^{-2/3}

Turbulence characterization

Mitigation techniques

Atmospheric turbulence and propagation effects

- Local variations of air temperature ⇒ local variations of refractive index (Δn) (Δφ α Δn/λ)
- C_n^2 quantifies turbulence strength : $Cov(\Delta n) = C_n^2 \rho^{2/3}$

Starry sky, Van Gogh, 1889

of Verselan addresses in

System performance : main parameters and modelling

- Parameters of interest of EO and laser systems
 - Resolution (*R*)
 - Isoplanatism domain (θ_0)
 - Axis movement or angle of arrival (AoA) (tracking system)
 - Power in the bucket (PIB) (scintillation)
- Tools
 - Analytical models domain of validity limited
 - Wave optics propagation computional cost
 - Dedicated simplified models based on analytical ones

Resolution – anisoplanatism

r₀ : coherence length

<u>Vertical propagation $\lambda = 0.6 \ \mu m$, $r_0 = 10 \ cm$ </u>

Horizontal propagation @ 3 km high,

 λ = 0.6 $\mu m,$ L = 20 km, $\boldsymbol{r_0}$ = 10 cm

- Horizontal propagation @ ground level
 - $\lambda = 1.55 \ \mu m, \ L = 1 \ km, \ r_0 = 2 \ cm$

D = 0.15 m $C_n^2 = 5.10^{-15} \text{ m}^{-2/3}$; horizontal path $\lambda = 1.55 \text{ }\mu\text{m}$ Required resolution = 0.1 m

Range is reduced 9.5 km \rightarrow 4 km. Turbulence effect at 0.9 km $\Theta_0^*L < \mathbf{R}$ after 2 km.

ONERA

and Vertering addressing the

Power in the Bucket

Wave optics modelling

- D = 30 cm , λ = 1.55 μ m
- horizontal propagation, range 10km,
- transverse wind speed constant and equal to 5 m/s

 $C_n^2 \oslash \Rightarrow <I > &$ and Intensity fluctuations \oslash

Simplified model

- D = 30 cm, $\lambda = 1.55 \mu \text{m}$
- different slant paths geometries (elevation 0.5°), range 10km, C_n² @ ground = 10⁻¹⁴ m^{-2/3}
- transverse wind speed constant = 5 m/s,

Intensity fluctuations depends on C_n² profile

Angle of arrival

Modulation depends on the wind speed (red/ black Fluctuations depends on the system diameter (blue/red)

Vertical profile estimation on optical link : sensor

Wavefront sensor:

- E2V EMCCD220 OCAM² Firstlight Imaging
- 8x8 square subapertures
- 1500 Hz

- Temporal spectra
 - Collected flux per sub-aperture (I_{sb})
 - Slopes or phase
- Probability density function of I_{sb}

Context

Vertical profile estimation on optical link : results

Temporal Power Spectrum Densities and statistics

Turbulence characterization : profiler

C. Robert et al, Near ground results of the COSLIDAR C2n profiler. In Journal of Physics: Conference Series (Vol. 595, No. 1, 2015)

ONERA

Turbulence characterization

Adaptive optics for imagery

 Telescope : Canjuers military camp (1000 m height) (South of France)

Loop

closed

ONERA

ted Version additioned the

- Target Mont Lachens (1700 m height) in summer and autumn 2008 (France).
- Range 11km IR (3 5 μm)
- Shack-Hartmann WFS sensing on extended target

Image quality enhancement (contrast, thinner details) Limited in the field because of anisoplanatism

Loop

opened

Context

System performance - tools | T

Turbulence characterization

Mitigation techniques

Image processing

12/10/11 15h34 Range 7 km $C_n^2 = 7.10^{-16} \text{ m}^{-2/3}$ $T_e = 25 \text{ ms} / 69 \text{ fps}$

Comparison Criteria

- Blur (in pixel)
- Tilt (in pixel)

Quantification of the enhancemer Comparison between techniques

Excellent tilt correction Limitation in blur correction (exposure time ? Focus calibration ?, ...)

12 A. Van Ekeeren et al "Patch-based local Turbulence Compensation in anisoplanatic Conditions ", SPIE 8355 (2012)

ONERA Manual Annual Annual

- For Imaging, solution depends on
 - The field of view
 - Turbulence strength

Field-of-view	Solution
< isoplanatic angle	Adaptive optics
< isokinetic angle	image stabilization (in hardware or software)
> isokinetic angle	real-time image processing

⇒ Image processing more appropriate

- ► For laser beam delivery ⇒Adaptive optics systems
 - Precompensation of the outgoing beam
 - Strong turbulence case
 - Specific wavefront sensings (scintillation) sensorless AO systems
 - Correction of both phase and amplitude (beam shaping)
 - Adaptive optics systems under development or in validation in laboratories

To summarize

- System performance assessment tools
 - Physical models (time consuming not useful for system designing)
 - Simplified models based on knowledge of PSD and PDF
- Turbulence along the path
 - Great variability (day/night, location, ...)
 - Inhomogeneity, turbulence volume
 - Characterization methods proposed (profiler temporal resolution)
- Mitigation techniques
 - Adaptive optics limitation: anisoplanatism strong turbulence
 - Image processing limitation: strong turbulence real time